ОглавлениеНазадВпередНастройки
Добавить цитату

Два постулата

Теперь, когда Эйнштейн решил строить свою теорию сверху вниз, то есть выводить ее из первых принципов, перед ним встал выбор: с какого постулата, с каких положений общего принципа начать?

Его первым постулатом стал принцип относительности, утверждавший, что все фундаментальные законы физики, в том числе уравнения Максвелла, описывающие поведение световой волны, являются одинаковыми для всех наблюдателей, движущихся относительно друг друга с постоянной скоростью. Или, если говорить более точно, они неизменны во всех инерциальных системах отсчета, то есть одинаковы для того, кто покоится относительно Земли, и того, кто движется с постоянной скоростью в поезде или космическом корабле. Он поверил в этот постулат еще со времени своего мысленного эксперимента, в котором он представлял себя летящим вдоль светового луча: “С самого начала мне интуитивно было ясно, что с точки зрения этого наблюдателя все должно подчиняться тем же законам, что и для наблюдателя, покоящегося относительно Земли”.

Для сопутствующего постулата, касающегося скорости света, у Эйнштейна было два варианта.

1. Он мог рассматривать излучение света как испускание частиц и считать, что свет вылетает из источника подобно пулям из ружья. Тогда не было необходимости в эфире. Частицы света могли распространяться в пустоте. Их скорость измерялась бы относительно источника. Если бы источник приближался к вам, вылетающие частицы летели бы к вам быстрее, чем если бы он от вас удалялся от вас. (Представьте себе питчера (подающего в бейсболе), который кидает мяч со скоростью 160 км/ч. Если он бросает мяч из машины, мчащейся на вас, мяч полетит к вам быстрее, чем если машина с подающим мяч питчером будет от вас удаляться.) Другими словами, свет, излучаемый звездой, будет распространяться со скоростью 300 000 км/с, но если звезда летела бы к Земле со скоростью 16 000 км/с, скорость испускаемого ею света относительно наблюдателя на Земле должна была бы быть равной 316 000 км/с.

2. Альтернативное утверждение состояло в том, что скорость света постоянна – 300 000 км/с – и не зависит от движения источника, что больше согласовалось с волновой теорией света. Если использовать аналогию со звуковыми волнами, в этом случае звук сирены пожарной машины не доходил бы до вас быстрее из-за того, что она мчится к вам, а не стоит на месте.

Во всех случаях звук бы распространялся через воздух со скоростью примерно 1200 км/ч.

В течение некоторого времени Эйнштейн разрабатывал первую гипотезу, то есть эмиссионную теорию. Такой подход особенно привлекателен, если вы считаете, что свет ведет себя как поток квантов. Как было показано в предыдущей главе, как раз эта концепция световых квантов была предложена Эйнштейном в марте 1905 года, когда он сражался со своей теорией относительности.

Но при этом подходе возникали проблемы. Его использование, похоже, должно было привести к тому, что и уравнения Максвелла, и волновая теория света стали бы несправедливыми. Если скорость света зависит от скорости источника, из которого свет испускается, тогда в нем должна каким-то образом содержаться в неявном виде информация об этом. Но и эксперименты, и уравнения Максвелла указывали на то, что этого не происходит.

Эйнштейн попытался найти способы как-то модифицировать уравнения Максвелла, чтобы они согласовывались с эмиссионной теорией световых квантов, но попытки оказались безуспешными.

“Эта теория требует, чтобы везде и в каждом определенном направлении было возможно распространение световых волн с разными скоростями, – вспоминал он свои рассуждения позднее, – и могло оказаться невозможным построить разумную теорию электромагнетизма, в которой бы такой трюк оказался выполнимым”.

К тому же ученые не смогли найти никакого свидетельства того, что скорость света зависит от скорости источника. Свет от разных звезд, похоже, приходит к нам с одной той же скоростью.

Чем больше Эйнштейн думал об эмиссионной теории света, тем больше проблем в ней находил. Как он объяснял своему другу Паулю Эренфесту, было трудно понять, что происходит, когда свет от “движущегося” источника преломляется или отражается от покоящегося экрана. Кроме того, если считать эмиссионную теорию правильной, свет от ускоряющегося источника мог бы в определенный момент направиться назад к источнику.

И поэтому Эйнштейн отверг эмиссионную теорию в пользу постулата о постоянстве скорости света, не зависящей от того, как быстро движется источник. Он говорил Эренфесту: “Я пришел к убеждению, что свет всегда должен определяться только частотой и интенсивностью и совершенно не зависеть от того, приходит ли он от движущегося источника или стационарного”.

Теперь у Эйнштейна было два постулата: “принцип относительности” и новый, который он назвал “постулатом скорости света”. Он аккуратно сформулировал его так: “Свет в пустоте всегда распространяется с определенной скоростью V независимо от состояния движения излучающего тела”. Например, когда вы измеряете скорость света, испускаемого фарами поезда, она всегда будет равна 300 000 км/с – и когда поезд приближается к вам, и когда поезд удаляется.

К сожалению, оказалось, этот постулат о постоянстве скорости света не сочетается с принципом относительности. Почему? Позднее Эйнштейн использовал следующий мысленный эксперимент, чтобы объяснить это явное противоречие.

Он предложил представить себе “луч света, направленный вдоль железнодорожной платформы”. Человек, стоящий на платформе, измерит скорость пролетающего мимо него луча и получит значение 300 000 км/с. А теперь представим себе женщину, сидящую в вагоне очень быстро мчащегося поезда, удаляющегося от источника света со скоростью 3200 км/с. Мы предположим, что для нее скорость проносящегося мимо света будет равна всего 296 800 км/с. Эйнштейн написал: “Скорость луча света относительно мчащегося вагона тогда окажется меньшей”.

“Но этот результат приходит в противоречие с принципом относительности, – добавил он, – поскольку, как и каждый другой основной закон природы, закон распространения света должен в соответствии с принципом относительности быть одним и тем же и когда железнодорожный вагон является системой отсчета, и когда системой отсчета служит платформа”. Другими словами, уравнения Максвелла, определяющие скорость распространения света, должны быть справедливы и для движущегося вагона, и для покоящейся платформы. Нельзя придумать никакого эксперимента, включая измерение скорости света, который бы позволил различить, какая из инерциальных систем находится в состоянии “покоя”, а какая – движется с постоянной скоростью.

Это был странный результат. Женщина, едущая в поезде в направлении источника света или от него, и наблюдатель, стоящий на платформе, измеряющий скорость того же луча света, который летит мимо него, должны увидеть, что свет распространяется с одинаковой скоростью. Если женщина бежит по рельсам к поезду или от него, ее скорость движения относительно него будет разной. Но ее скорость относительно луча света от фар этого поезда будет неизменной. Все эти странности сделали, как думал Эйнштейн, эти два постулата “на первый взгляд несовместимыми”. Позже он рассказал об этом противоречии в лекции, посвященной тому, как он пришел к своей теории относительности: “Постоянство скорости света несовместимо с правилом сложения скоростей. В результате мне пришлось провести почти год в тщетных попытках найти выход”.

Соединение постулата о скорости света с принципом относительности привело бы к тому, что наблюдатель должен был бы при измерении скорости света получать одно и то же значение независимо от того, источник ли света движется к нему или от него, он ли движется к источнику света или от него или же оба как-то движутся или находятся в состоянии покоя. Скорость света должна быть одной и той же вне зависимости от взаимного движения источника и наблюдателя.

Так обстояли дела в начале марта 1905 года. Эйнштейн сначала выбрал принцип относительности и возвел его в ранг постулата. После этого не без колебаний принял в качестве постулата и то, что скорость света не зависит от движения источника света. И стал ломать голову над явным противоречием, состоявшим в том, что наблюдатель, бегущий по направлению к источнику света, и наблюдатель, удаляющийся от источника, увидят свет, идущий к ним с одинаковой скоростью, и эту же скорость зафиксирует наблюдатель, неподвижно стоящий на платформе и наблюдающий за движением того же луча.

Эйнштейн писал: “В связи с этой дилеммой кажется неизбежным отказаться либо от принципа относительности, либо от простого закона распространения света в пустоте”.

А потом случилось нечто невероятное. Во время разговора с другом к Альберту Эйнштейну пришло одно из самых замечательных творческих озарений за всю историю физики.

Анализ, изложенный ниже, взят из книги Миллера (Miller 1981) и работ John Stachel, John Norton, Robert Rynasiewicz, приведенных в библиографии. Миллер, Нортон и Ринасиевич были настолько любезны, что прочитали черновик моей книги и представили свои исправления.
Если источник звука движется на вас, волны к вам не будут приходить быстрее. Однако, согласно эффекту Доплера, волны сожмутся, длина волны уменьшится, частота увеличится, что приведет к более высокому звуку (а когда завывающая пожарная машина, промчавшись мимо вас, начнет удаляться – к более низкому). То же самое происходит со светом. Если источник движется на вас, длина волны уменьшается (частота увеличивается), так что его спектр сдвигается в более голубую часть. Спектр удаляющегося источника сдвигается в более красную область. – Прим. авт.
См. Miller, 1981, 311, где описывается связь между работами Эйнштейна по световым квантам и специальной теорией относительности. В разделе 8 работы по специальной теории относительности Эйнштейн обсуждает световые импульсы и заявляет: “Примечательно, что энергия и частота светового пакета меняются в зависимости от движения наблюдателя в соответствии с тем же законом”.
Norton, 2006a.
Письмо Эйнштейна Альберту Риппенбейну, 25 августа 1952 г., AEA 20– 46. См. также письмо Эйнштейна Марио Вискардини, 28 апреля 1922 г., AEA 25–301, где он написал: “Я тогда отверг эту гипотезу, поскольку она влекла за собой огромные теоретические трудности (например, требовалось объяснить образование тени экраном, движущимся относительно источника света)”.
Mermin, 23. Это в конце концов было окончательно доказано Вильгельмом де Ситтером, который в 1913 г. опубликовал свои исследования двойных звезд, вращающихся одна вокруг другой с громадной скоростью. Но даже и до этого ученые заметили, что нельзя было найти свидетельств, подтверждающих то, что скорость света, излучаемого движущимися звездами или любыми другими источниками, не одинакова.
Письмо Эйнштейна Паулю Эренфесту, 25 апреля и 20 июня 1912 г. Выбрав такой подход, Эйнштейн продолжил множить противоречия с квантовой теорией, которые мучили его всю оставшуюся жизнь. В своей работе по световым квантам он превозносит волновую теорию, но в то же время выдвигает идею о том, что свет можно рассматривать как частицы. Теория излучения света хорошо сочетается с таким подходом. Но и факты, и интуиция заставили его отказаться от этого подхода в теории относительности, причем как раз в тот момент, когда он заканчивал свою статью по квантам света. В предисловии к сборнику статей (Einstein’s Miraculous Year (Princeton: Princeton University Press, 2005), xi) физик сэр Роджер Пенроуз пишет: “Для меня было практически немыслимо представить, что он написал в одном и том же году две работы, в которых излагались его гипотетические взгляды на природу и которые, как он ощущал, противоречили друг другу. Это можно объяснить только тем, что он должен был в глубине души чувствовать (и как выяснилось, так и было), что не было никакого настоящего противоречия между точностью – а на самом деле истинностью – волновой теории Максвелла и альтернативной теорией квантов, которую он изложил в своей статье про кванты. Это напоминает борьбу Исаака Ньютона около 300 лет назад, по существу, с той же самой проблемой, когда тот предложил любопытный гибрид волнового и частичного подходов для того, чтобы объяснить противоречивые проявления поведения света”. Roger Penrose, предисловие к книге Einstein’s Miraculous Year (Princeton: Princeton University Press, 2005), xi. См. также Miller 1981, 311.
Einstein. On the Electrodynamics of Moving Bodies, 30 июня 1905 г., CPAE 2: 23. Изначально Эйнштейн использовал для обозначения постоянной скорости света букву V, а семь лет спустя стал использовать букву с, которая и используется теперь всеми.
Во втором параграфе статьи он формулирует постулат о скорости света более точно: “Каждый луч света в «покоящейся» системе координат движется с определенной скоростью V независимо от того, испускается ли этот луч света покоящимся или движущимся телом”. Другими словами, в этом постулате утверждается, что скорость света остается той же самой независимо от того, с какой скоростью движется источник света. Многие писатели при формулировке постулата путают это утверждение с более сильным утверждением о том, что свет всегда движется с одинаковой скоростью в любой инерциальной системе координат независимо от того, как быстро движутся и в каком направлении (друг к другу или в противоположные стороны) источник и наблюдатель. Это утверждение тоже правильное, но оно вытекает из объединения принципа относительности и постулата о скорости света.
Einstein 1922c. Эйнштейн объясняет это в своей популярной книге 1916 г.: Relativity: The Special and General Theory, в параграфе 7 The Apparent Incompatibility of the Law of Propagation of Light with the Principle of Relativity (“Кажущаяся несовместимость закона распространения света с принципом относительности”).
Einstein 1916, параграф 7.