ОглавлениеНазадВпередНастройки
Добавить цитату

2. Искусство открытия

Философское общество Техаса было основано Сэмом Хьюстоном и его друзьями в первый год независимости Республики Техас. Первым президентом общества (1837–1859) стал Мирабо Бонапарт Ламар, позже сменивший Хьюстона на посту президента Техаса. Вскоре после создания Философское общество фактически прекратило свою деятельность, до возрождения в 1937 г. С тех пор количество членов общества непрерывно растет. Теперь в нем состоят академики, журналисты, политики, владельцы ранчо (скотопромышленники), писатели, артисты, бизнесмены и даже несколько философов. Ежегодно члены общества собираются в разных городах Техаса, чтобы послушать доклады на темы, выбранные действующим президентом, и встретиться со старыми друзьями. Будучи членами общества, мы с женой имели возможность посетить такие города Техаса, как Абилин, Корпус-Кристи, Форт-Уэрт, Кервилл и Ларедо, которые лежат за пределами наших обычных маршрутов, а также и более знакомые места вроде Далласа и Хьюстона. В 1994 г. я удостоился чести исполнять обязанности президента и провести в Остине встречу, посвященную вопросам космологии.

В 2009 г. члены Философского общества снова собрались в Остине. Темой встречи президент того года Майкл Джиллетт выбрал искусство в Техасе. Были проведены сессии по искусству обучения, искусству выражения и искусству искусств. Я выступил с лекцией, текст которой стал основой для этой главы, на сессии по искусству открытия. Философское общество публикует сборники докладов со своих встреч, но не слишком быстро; доклады со встречи 2009 г., среди которых было и мое выступление, в итоге были изданы в 2014 г.

Платон полагал, что главным способом познания мира является размышление о нем. В диалоге Платона «Законы» есть интересная дискуссия об астрономии. Платон признает, что, возможно, астрономам было бы полезно изредка поглядывать на небо, но только для того, чтобы сосредоточить свой разум, точно так же, как математикам полезно рисовать схемы при доказательстве геометрической теоремы, однако настоящая работа по совершению открытий в науке, как и в математике, должна быть исключительно мыслительной. Платон был не прав на этот счет, как и во многих других вопросах.

Диаметрально противоположной точки зрения придерживался Фрэнсис Бэкон, лорд-канцлер Англии при короле Якове I. Бэкон мог многое рассказать о науке, общественный интерес к которой тогда только начал проявляться. Он считал, что в науке работает исключительно эмпирический метод. Необходимо проводить эксперименты и непредвзято, без каких-либо предубеждений, изучать любые вопросы мироздания, доступные для анализа, и тогда истина постепенно проявится. Он тоже был не прав.

Истина, как мы выяснили по прошествии столетий, состоит в том, что научное открытие неизбежно требует взаимодействия теории и эксперимента (наблюдения). Теория нужна, чтобы направлять эксперимент к цели и интерпретировать полученные результаты. Эксперимент необходим не только для подтверждения или опровержения теории, но и для того, чтобы наполнять ее смыслом. Они идут вместе нераздельно.

В некоторых областях науки, особенно в сфере моих научных интересов – физике элементарных частиц, две роли ученых тем не менее заметно отличаются. Требования теоретического и экспериментального разделов физики стали настолько высокими и узкоспециальными, что со времен Энрико Ферми больше не было ни одного ученого, кто мог бы одинаково эффективно работать и как теоретик, и как экспериментатор. Я теоретик, поэтому я могу описать вам искусство научного открытия только с одной стороны.

Будучи теоретиками, мы воодушевляемся встающими перед нами загадками. Иногда эти загадки появляются в результате экспериментальных открытий. Вот вам классический пример. В конце XIX в. экспериментаторы искали способ измерить зависимость наблюдаемой скорости света от движения Земли. Земля движется вокруг Солнца со скоростью около 30 км/с; скорость света составляет примерно 300 000 км/с, поэтому было сделано предположение, что скорость света должна изменяться в пределах 0,01 % в зависимости от времени года, поскольку летом Земля движется в одном направлении, а зимой – в обратном. Считалось, что свет – это колебания среды, получившей название «эфир» и даже если Солнечная система движется сквозь эфир, Земля не может быть неподвижной относительно эфира и зимой и летом. Зависимость скорости света от движения Земли пытались обнаружить, но так и не нашли. Физики столкнулись с пугающей загадкой, которая (вместе с рядом других тайн) в итоге вдохновила Эйнштейна сформулировать новый взгляд на природу пространства и времени – теорию относительности.

Однако иногда сами физические теории ставят перед нами интригующие загадки. Например, в конце 1950-х гг. стало очевидно, что наша теория слабого ядерного взаимодействия прекрасно описывает все существующие экспериментальные данные, связанные с этой силой. (Силы слабого ядерного взаимодействия приводят к такому типу радиоактивного распада, при котором частица внутри ядра, скажем нейтрон или протон, превращается в другую частицу, протон или нейтрон, и излучает быстрый позитрон или электрон. Кроме того, именно эта сила запускает последовательность реакций, разогревающих Солнце.) Эксперименты, связанные со слабым ядерным взаимодействием, не содержали никаких загадок. Проблема возникла, когда эту теорию попытались применить к другим явлениям, которые не наблюдались в экспериментах. (Один из таких процессов, который мы, вероятно, никогда не сможем наблюдать, – столкновение между собой очень слабо взаимодействующих частиц, называемых нейтрино.) Когда теорию слабого взаимодействия применили для описания таких процессов, результат получился абсурдным; теория предсказывала бесконечные вероятности. Не слишком мудрый вывод о природе, на самом деле – просто бессмыслица. Очевидно, была нужна новая теория, такая, которая сохраняла бы достижения уже существующей, но при этом не давала бы абсурдных ответов на вполне разумные вопросы, даже если эти вопросы относятся к экспериментам, которые никогда не проводились и, вероятно, никогда не будут осуществлены. Я и другие физики-теоретики работали над этой проблемой в 1960-х гг., и в итоге мы нашли такую теорию. Оказалось, что новая теория не только описывает слабое ядерное взаимодействие, но является универсальной теорией, применимой и к более привычным силам, к электромагнетизму. Кроме того, новая теория предсказала существование нового типа слабого взаимодействия, который впоследствии был обнаружен в экспериментах с частицами высоких энергий. Но не эксперимент привел к созданию этой теории.

Иногда мы сталкиваемся с загадками в тех теориях, которые согласуются со всеми данными наблюдений и не имеют внутренних противоречий, но при этом являются очевидно неудовлетворительными, поскольку содержат слишком много произвольных параметров. Фактически сейчас мы столкнулись именно с этой проблемой. У нас есть теория, объединяющая сильное взаимодействие (силы которого удерживают вместе кварки внутри частиц атомного ядра) с электромагнитным и слабым взаимодействием. Теория, получившая название Стандартной модели, объясняет все эффекты, которые мы можем измерить в наших научных лабораториях физики элементарных частиц. Она дает идеальные конечные и разумные результаты, когда мы используем ее для расчетов, и при этом теория остается неудовлетворительной, поскольку слишком большое количество параметров модели приходится подбирать, чтобы согласовать результаты расчетов с экспериментальными данными. Например, в Стандартной модели есть шесть типов частиц, которые называются кварками. Почему их шесть? Почему не четыре или восемь? Ответа нет. Почему у этих частиц именно такие свойства? Самый тяжелый из кварков примерно в 100 000 раз тяжелее самого легкого. Мы не знаем, чем обусловлена такая разница в массе; ее значения подбираются просто для подгонки под эксперимент. В этом нет никаких противоречий; теория согласуется с экспериментом, только, очевидно, не дает окончательных ответов.

Есть в этой «кунсткамере» и свой «слон»: гравитация вообще никак не учтена в Стандартной модели. В принципе, у нас есть достаточно правдоподобная теория гравитации – ОТО Эйнштейна, которая отлично работает в отношении всех наблюдаемых явлений, но все же и она приводит к бессмысленным результатам, когда рассматриваются системы с экстремальными энергиями. Такие энергии невозможно получить в лабораторных условиях, но мы можем мысленно моделировать подобные состояния, и, когда мы используем для этого теорию гравитации, перед нами встают новые загадки.

Начиная с 1970-х гг. мы располагаем теорией слабого, электромагнитного и сильного взаимодействия, имеющей слишком много произвольных параметров, и теорией гравитации, которую невозможно распространить на системы с экстремально высокими значениями энергии. И мы застряли в этом состоянии, поскольку наши ускорители элементарных частиц не приносят новых данных, которые загадывали бы нам новые загадки и подпитывали наше воображение. Одной из причин тому стало решение конгресса отказаться от строительства большого ускорителя в Техасе, того самого Сверхпроводящего суперколлайдера.

Теперь мы надеемся на получение значительных результатов на Большом адронном коллайдере, новом ускорителе, который только начинает работать в Европе. БАК представляет собой круговой туннель длиной 26,7 км, расположенный на границе между Францией и Швейцарией на глубине около 150 м. В этом туннеле два пучка протонов разгоняются по кругу в противоположных направлениях и затем сталкиваются. Мы надеемся, что, изучая происходящие при этих столкновениях процессы, мы совершим новые открытия, которые либо помогут нам решить уже существующие загадки, либо явят новые захватывающие головоломки.

Недавно были выполнены первые эксперименты по столкновению двух пучков частиц. Пока количество частиц в пучках и энергии столкновения недостаточно велики, чтобы можно было обнаружить какие-то новые эффекты, но мы возлагаем большие надежды на БАК в ближайшей перспективе.

Я уже говорил, что я теоретик. Я не работаю на БАК. Я был там в июле, и мне показали один из четырех огромных детекторов частиц, расположенных вдоль кольцевого туннеля в местах, где сталкиваются частицы. Детектор ATLAS, который я видел, производит сильное впечатление. Представьте себе зал приемов – вот примерно в таком помещении установлен детектор ATLAS. У меня на самом деле возникло чувство, будто я нахожусь в кафедральном соборе.

У меня нет тех навыков и опыта, которыми обладают экспериментаторы, работающие на БАК, однако я с уверенностью могу сказать, чем они занимаются. Я надеюсь, что их открытия выведут нас из застоя, в котором мы пребываем уже несколько десятков лет. К примеру, существует чрезвычайно привлекательный принцип симметрии, известный как суперсимметрия. Этот принцип занимал внимание многих теоретиков последние 30 лет, но до сих пор не было ни единой крупицы доказательств. (Ладно, одна крупица все же существует, но она не слишком большая.) Мы надеемся, что в БАК удастся получить новые типы частиц, существование которых предсказано теорией суперсимметрии. Может оказаться, что свойства одного из таких типов частиц будут подходящими для объяснения темной материи, масса которой, по утверждениям астрономов, составляет 5/6 всей массы Вселенной. (Темную материю не стоит путать с еще более загадочной темной энергией. К сожалению, о темной энергии БАК, скорее всего, нам ничего не расскажет.) Если такие частицы удастся обнаружить, я полагаю, это станет триумфом физики в платоновском смысле. Что ж, поживем – увидим.

Итак, прямо сейчас мы переживаем переломный момент в истории фундаментальной физики. Больше всего мы надеемся на неизбежное возрождение перекрестного оплодотворения теории и эксперимента, которое было столь успешным в 1960-е и 1970-е гг. и с тех пор потеряло свою силу.