ОглавлениеНазадВпередНастройки
Добавить цитату

Рождение химии

Для тех читателей, которые пытаются представить себе устройство космоса, рождение сверхновой звезды ничуть не хуже Большого взрыва. Разумеется, Большой взрыв ведет к образованию атомов водорода, которые, в свою очередь, неизбежно приводят к образованию первых звезд. Однако путь от звезды до знакомого нам мира далеко не так очевиден. Огромный шар, состоящий из атомов водорода, даже если в его ядре скапливаются более тяжелые элементы вплоть до железа, еще не указывает верного направления пути.

Но когда взрываются большие звезды, в космосе появляется нечто новое. Распавшиеся небесные тела усеивают космическое пространство всеми элементами, из которых они состояли. Углерод, кислород, азот, фосфор и сера – основные ингредиенты живой материи – появляются в изобилии. Магний, кремний, железо, алюминий и кальций, входящие в состав горных пород, из которых преимущественно и состоят планеты типа Земли, тоже имеются в достаточном количестве. Но в невообразимом поле энергии, порождаемом взрывающимися звездами, все эти элементы в процессе ядерного синтеза создают самые невероятные комбинации – в результате формируется вся Периодическая таблица, т. е. первичные 26 элементов образуют множество других. Именно тогда рождаются такие редкие элементы, как драгоценные металлы – серебро и золото, утилитарные вещества медь и цинк, ядовитые мышьяк и ртуть, радиоактивные уран и плутоний. Более того, эти элементы в космическом пространстве соединяются и взаимодействуют друг с другом во все новых и новых химических реакциях.

Химическая реакция происходит, когда один обычный атом сталкивается с другим таким же. У каждого атома имеется крохотное, но тяжелое ядро, обладающее положительным электрическим зарядом, окруженное облаком из одного или нескольких отрицательно заряженных электронов. Изолированные атомные ядра практически никогда не взаимодействуют, за исключением внутризвездной «скороварки», для которой характерны сверхвысокие температура и давление. Однако электроны разных атомов постоянно сталкиваются друг с другом. Химические реакции происходят в те моменты, когда встречаются два или более атомов и их электроны вступают во взаимодействие и перегруппировываются. Такое перемешивание и связывание электронов случается по той причине, что их определенные комбинации оказываются наиболее устойчивыми, особенно совокупность двух, десяти или 18 электронов.

Первые химические реакции после Большого взрыва порождают молекулы – небольшие группы атомов, тесно связанных между собой. Еще до того, как атомы водорода в результате ядерного синтеза внутри звезд образуют гелий, в вакуумном пространстве глубокого космоса возникают молекулы водорода (H2), каждая из которых состоит из двух атомов, тесно связанных между собой. У каждого атома водорода только один электрон, т. е. этот атом находится в нестабильном состоянии в условиях космоса, где действует магическое правило двух электронов. Так что встреча двух атомов водорода объединяет их электроны в общую молекулу, обеспечивающую стабильность. Принимая во внимание огромное количество водорода, возникшего в результате Большого взрыва, нетрудно прийти к выводу, что молекулы водорода предшествовали образованию звезд и составляли основную часть космоса с самого начала появления атомов.

Вслед за рождением сверхновых звезд, по мере того как в космосе рассеивались другие элементы, возникало множество интересных молекул. Среди них одним из самых ранних соединений стала вода (H2O), в молекуле которой два атома водорода соединились с одним атомом кислорода. По всей видимости, именно в пространстве вокруг сверхновых звезд образовались молекулы азота (N2), аммиака (NH3), метана (CH4), монооксида углерода (СО) и диоксида углерода (СО2). Всем этим видам молекул предстояло сыграть важнейшую роль в формировании планет и появлении живой материи.

Затем образовались минералы – микроскопические твердые образцы химического совершенства и кристаллической структуры. Первые минералы могли появиться только в условиях высокой плотности скоплений минералообразующих элементов и сравнительно низких температур, чтобы атомы смогли образовать кристаллы. Всего несколько миллионов лет спустя после Большого взрыва благоприятные условия для таких реакций возникли в разреженном и остывающем пространстве вокруг первых взорвавшихся звезд. Крошечные кристаллиты чистого углерода в форме алмаза и графита стали, вероятно, первыми минералами во Вселенной. Эти первые кристаллы представляли собой нечто вроде пыли, отдельные частицы были очень мелкие, но, возможно, достаточные по величине, чтобы сверкнуть в космосе бриллиантовым блеском. К первым углеродистым образованиям вскоре добавились другие высокотемпературные твердые вещества, образованные из таких элементов, как магний, кальций, азот и кислород. Среди них были знакомые нам минералы вроде корунда, химического соединения алюминия с кислородом, которое особенно ценится в своих ярких цветных разновидностях – рубинах и сапфирах. Тогда же появились в небольшом количестве хризолиты (силикат магния с другими составляющими), ныне полудрагоценные камни, астрологические знаки рожденных в августе, и муассаниты (карбид кремния), известные в наше время как дешевый искусственный суррогат бриллиантов. Всего в межпланетной пыли содержалось около дюжины известных нам «полезных ископаемых». Таким образом, после взрыва первых звезд Вселенная начинала становиться разнообразнее.

Ничто в космосе не случается единожды (за исключением, пожалуй, Большого взрыва). Рассеянные в космическом пространстве осколки взорвавшихся звезд постоянно подвергались воздействию сил гравитации. Таким путем остатки первого поколения звезд неизбежно порождали новые звездные скопления, формируя туманности, состоявшие из громадных облаков межзвездного газа и пыли, оставшихся после взрыва предыдущих поколений звезд. Каждая новая туманность содержала больше железа и немного меньше водорода, чем предыдущая. Этот цикл продолжался 13,7 млрд лет: старые звезды порождали новые, изменяя структуру космоса. Неисчислимые миллиарды звезд возникли в неисчислимом количестве галактик.