ОглавлениеНазадВпередНастройки
Добавить цитату

Глава 1. Основные сведения о сахарном диабете

1. Поджелудочная железа

Поджелудочная железа относится к эндокринной системе человеческого организма, которая также включает расположенные в разных частях тела железы внутренней секреции – гипофиз, щитовидную, половые железы и некоторые другие. Эти железы вырабатывают определенные химические соединения, называемые гормонами, которые выводятся в кровь и разносятся с ней по всему организму вместе с кислородом и питательными веществами. Гормоны столь же необходимы нам, как эти питательные вещества и кислород; они влияют на целый комплекс жизненных процессов – таких, как обмен веществ и энергии, процессы роста и регенерации, уровень сахара и кальция в крови и так далее. Недостаток или избыток какого-либо гормона приводит к заболеванию.

САХАРНЫЙ ДИАБЕТ – ЭТО ХРОНИЧЕСКОЕ ЗАБОЛЕВАНИЕ, ПРИВОДЯЩЕЕ К НАРУШЕНИЯМ УГЛЕВОДНОГО, БЕЛКОВОГО И ЖИРОВОГО ОБМЕНОВ В РЕЗУЛЬТАТЕ НЕДОСТАТКА ГОРМОНА ИНСУЛИНА ИЛИ НЕПРАВИЛЬНОГО ЕГО ДЕЙСТВИЯ.

Осознав этот факт, рассмотрим строение и функции поджелудочной железы.

Она находится слева за желудком, в верхней части живота и доходит до селезенки; ее положение можно представить, если провести ладонью от левого бока под ребрами к пупку. В поджелудочной железе выделяют головку, тело и хвост. В функциональном отношении она состоит из двух независимых частей: основной массы, выделяющей пищеварительный сок, и так называемых «островков Лангерганса», на которые приходится лишь 1-2% от общего объема органа (рис 1.1). Именно эти островки, открытые в XIX веке немецким физиологом Лангергансом, и выполняют эндокринную функцию, так как в каждом из них содержится от восьмидесяти до двухсот гормонально активных клеток, выделяющих в кровь гормоны. Эти клетки, в зависимости от секретируемых ими веществ, делятся на четыре типа – альфа, бета, дельта и РР-клетки. В альфа-клетках вырабатывается глюкагон, в бета-клетках – инсулин, в дельта-клетках – гастрин и соматостатин, в РР-клетках – панкреатический полипептид. Большую часть каждого островка в теле и хвосте поджелудочной железы составляют бета-клетки (85%); на долю альфа-клеток приходится 11%, на дельта-клетки – 3%, и на РР-клетки – 1%.



Рис. 1.1. Поджелудочная железа. Выделены «островки» и кружками белого и черного цветов показаны альфа– и бета-клетки.


Каковы же функции гормонов, которые производят островки Лангерганса? Прежде всего отметим, что вещества, вырабатываемые дельта-клетками и РР-клетками, мы рассматривать не будем, так как в контексте данной книги они несущественны. Далее нам придется вспомнить, что используемый в быту термин «сахар» далеко не точен; на самом деле существует множество разновидностей сахаров, различающихся своим химическим строением. Одни из них имеют сложные молекулы, и такие сахара называют «полисахаридами», или сложными сахарами; структура других более проста и их называют «моносахаридами» или простыми сахарами. Так вот, глюкагон, вырабатываемый альфа-клетками, способствует распаду сложного сахара-гликогена и образованию из него простого сахара-глюкозы. В форме гликогена сахар накапливается «про запас» в некоторых наших органах – в печени и в мышцах; глюкоза же – это виноградный сахар, один из простейших сахаров, и в дальнейшем, если не оговаривается особо, мы будем употреблять эти два термина, глюкоза и сахар, как понятия полностью эквивалентные. Именно в форме глюкозы сахар присутствует в нашей крови.

Разобравшись с глюкагоном и сахарами, рассмотрим функцию инсулина. Однако перед этим полезно вспомнить еще один важный факт, касающийся нашего организма, а именно: наше тело состоит из клеток. Все клетки нуждаются в питании. Мы двигаемся, наш организм функционирует непрерывно (даже когда мы спим), а это значит, что мы непрерывно расходуем энергию. Восполнение энергии осуществляется на клеточном уровне: кровь постоянно доставляет клеткам кислород и питательные вещества, одним из которых – и очень важным! – является глюкоза. Если уподобить наши клетки бензиновому мотору, в котором постоянно сгорает топливо, то глюкоза как раз и является тем самым бензином, питающим наш биологический мотор.

Однако вспомним, что бензин попадает в автомобильный мотор с помощью довольно сложной системы – карбюратора, который впрыскивает порции горючего в камеру сгорания. При отсутствии карбюратора бензин в камеру не попадет, а при неисправном карбюраторе – может, и попадет, но не в том количестве, каком нужно. Точно такие же перипетии происходят с глюкозой, переносимой кровью: ее молекулы сами по себе не способны проникнуть в клетку-мотор. Роль карбюратора – только не механического, а химического – в данном случае играет инсулин.

Эту ситуацию можно описать еще таким образом. Представьте себе клетку как некий замкнутый объем, снабженный некоторым количеством дверей-проходов. Вокруг этого объема сконцентрированы молекулы глюкозы, которые могли бы попасть внутрь, если бы двери были открыты – однако двери заперты. Молекулы инсулина как раз и являются тем ключом, который отпирает двери клетки перед молекулами глюкозы. Напомним, что инсулин вместе с глюкозой переносится кровью; значит, в обычном случае (т. е. у здорового человека) инсулина около клетки вполне достаточно, чтобы отпереть двери перед глюкозой.

Что же происходит в иной ситуации, когда инсулина мало или нет вообще? Опишем эту картину следующим образом: стадия 1 – мы поглощаем пищу; стадия 2 – сложные углеводы, попавшие в составе пищи в желудок и кишечник, перерабатываются в моносахара, в основном – в глюкозу; стадия 3 – глюкоза всасывается через кишечную стенку в кровь и разносится по всему организму, но в клетки без инсулина (за редким исключением) не попадает. В результате, во-первых, клетки начинают голодать, а, во-вторых, уровень сахара в крови повышается сверх допустимого – наступает состояние гипергликемии.

Первое обстоятельство приводит к потере веса, затем – к дистрофии, к постепенному угасанию и, собственно говоря, к голодной смерти. Но смерть от голода – затяжной процесс, занимающий несколько недель и в данном случае не грозящий больному; он погибнет раньше от диабетической комы, вызванной вторым обстоятельством – гипергликемией, избытком кетоновых тел.

Чуть выше была сделана оговорка: глюкоза в клетки без инсулина (за редким исключением) не попадает. Этим исключением являются так называемые инсулинонезависимые ткани, которые забирают сахар из крови независимо от наличия инсулина, и если сахара слишком много, то он проникает в эти ткани в избыточном количестве.

Посмотрим, что же это за ткани. Прежде всего головной мозг, нервные окончания и нервные клетки. При повышенном уровне сахара в крови первым ощущением является тяжесть в голове, усталость, быстрая утомляемость, нарушение внимания. В хрусталик глаза глюкоза тоже проникает без помощи инсулина; в результате при повышенном сахаре крови хрусталик мутнеет, и кажется, будто перед глазами дымка. Эритроциты и внутренняя оболочка кровеносных сосудов также относятся к инсулинонезависимым тканям, и когда лишний сахар попадает в клетки, выстилающие кровеносные сосуды, это чревато крайне неприятными осложнениями в будущем.

Кроме описанных выше явлений наблюдается еще одно: сахар начинает выводиться через почки с мочой. Это тревожный сигнал, и он означает, что организм пытается защититься от избытка сахара.

В последующих главах мы рассмотрим все эти процессы подробнее, двигаясь как бы расширяющимися кругами; таков наш метод изложения – вначале читателю надо усвоить самые простые понятия, а затем переходить к более сложным. Поэтому сейчас достаточно отметить лишь два важнейших факта:

1. ПРИЧИНА ВСЕХ ОСЛОЖНЕНИЙ ПРИ ДИАБЕТЕ – ПОВЫШЕННЫЙ САХАР КРОВИ.

2. СОВРЕМЕННАЯ МЕДИЦИНА ПРЕДОСТАВЛЯЕТ ДИАБЕТИКУ СРЕДСТВА, ПОЗВОЛЯЮЩИЕ КОНТРОЛИРОВАТЬ И РЕГУЛИРОВАТЬ УРОВЕНЬ САХАРА В КРОВИ – НЕЗАВИСИМО ОТ СПОСОБНОСТИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ ВЫРАБАТЫВАТЬ ИНСУЛИН.

В человеческом организме все должно быть сбалансировано, все его системы должны функционировать в определенных рамках, все жизненные показатели – в том числе, и сахар крови – должны находиться в определенных границах. Это достигается обратной связью, существующей между воздействием на организм и откликом на это воздействие; и каждый наш орган фактически является тонким и сложным устройством, реализующим эту обратную связь. Вот простейший пример: мы перешли с шага на бег, мы расходуем больше энергии, и тут же сердце стало биться чаще, а легкие требуют больших объемов воздуха. Но в данном случае нам нужен не только воздух; в результате пробежки мы проголодаемся, и нам потребуется больше пищи.

Аналогичную регуляцию, характерную для всех систем с обратной связью, осуществляет и поджелудочная железа. Рассмотрим, как это происходит у здорового человека, проиллюстрировав изложение графиком естественной секреции инсулина (рис. 1.2).

Утром в крови содержится сравнительно небольшое количество сахара (так называемый «сахар натощак») и небольшое количество инсулина. Низкий уровень сахара в крови вызывает ощущение голода, и человек завтракает – предположим, в 7 часов утра. В результате концентрация глюкозы в крови повышается, и по этому сигналу поджелудочная железа начинает вырабатывать инсулин (как это показано на рис. 1.2). Инсулин способствует проникновению глюкозы в клетки, и ее уровень в крови довольно быстро снижается. В 12 часов человек снова ощущает голод – наступает время второго завтрака. Он ест, и все повторяется снова: повышение сахара, выброс новой порции инсулина, понижение сахара. Аналогичные процессы повторяются в 18 часов (после обеда) и в 22 часа (после ужина). Возможна, разумеется, иная схема питания, но суть от этого не меняется: у здорового человека поджелудочная железа отреагирует во всех случаях одинаково – выбросом необходимой порции инсулина.

Инсулин – белковый гормон немедленного действия; это значит, что в бета-клетках всегда есть запас инсулина, который поступает в кровь за считанные минуты и тут же начинает снижать сахар в крови. Затем, в зависимости от уровня сахара в крови, бета-клетки начинают синтезировать инсулин в необходимом количестве. Существует специальная единица для измерения количества инсулина, которую мы будем называть в дальнейшем просто ИНСУЛИННОЙ ЕДИНИЦЕЙ или ЕД; также существует общепринятая единица для измерения количества глюкозы в крови – миллимоль на литр, или ммоль/л. Мы встретимся в дальнейшем еще с некоторыми единицами измерения различных величин, поэтому давайте как следует запомним:

ЕД – так обозначается инсулинная единица

ммоль/л – так обозначается единица, при помощи которой измеряют количество глюкозы в крови.



Рис. 1.2. Кривая секреции инсулина у здорового человека.


У взрослого здорового человека общее количество инсулина, накопленного в островках поджелудочной железы, составляет примерно 200 ЕД, а скорость синтеза инсулина – около 40—50 ЕД в сутки. Бета-клетки производят столько инсулина, чтобы на каждый килограмм веса тела в среднем приходилось по 0,5-0,6 ЕД. Это средние, обобщающие показатели, но в течение суток скорость выработки инсулина сильно колеблется – от 0,25 ЕД в час до 2 ЕД в час – прежде всего в зависимости от содержания глюкозы в крови. Как мы уже отмечали, после еды, когда концентрация сахара в крови повышается, секреция инсулина идет быстрее – то есть избыток глюкозы интенсифицирует работу бета-клеток.

Теперь укажем количественные характеристики содержания сахара в крови здорового человека (в том случае, если кровь взята из пальца):

Натощак: от 3,3 до 5,5 ммоль/л

Через два часа после еды: от 4,4 до 7,8 ммоль/л

Ночью (2 – 4 часа ночи): от 3,9 до 5,5 ммоль/л.

Вот те показатели, на которые нужно ориентироваться людям с диабетом – в первую очередь тем, кто заболел диабетом в детстве или в молодом возрасте. В дальнейшем мы еще не раз вернемся к этим цифрам, а сейчас отметим два важных обстоятельства:

1. ИНСУЛИН – ГЛАВНЫЙ ИЗ ГОРМОНОВ, РЕГУЛИРУЮЩИХ ОБМЕН ВЕЩЕСТВ В ЧЕЛОВЕЧЕСКОМ ОРГАНИЗМЕ.

2. ЗНАЧЕНИЕ САХАРА КРОВИ ВЫШЕ 7,8 ММОЛЬ/Л НЕЖЕЛАТЕЛЬНО, А ВЫШЕ 10,0 ММОЛЬ/Л ПРИВОДИТ В ПЕРСПЕКТИВЕ К ДИАБЕТИЧЕСКИМ ОСЛОЖНЕНИЯМ – КАК ГОВОРЯТ, «РАБОТАЕТ» НА ОСЛОЖНЕНИЯ.